Skip to content

Getting Started with Rizk SDK

Getting Started with Rizk SDK

The Universal LLM Observability & Governance Platform

Rizk SDK is the industry-standard solution for LLM observability, tracing, and governance. Trusted by leading AI teams, Rizk provides comprehensive monitoring and policy enforcement across any LLM framework with zero configuration required.

Why Rizk SDK?

Universal Framework Integration

Unlike point solutions that require framework-specific implementations, Rizk SDK provides a single, unified API that works seamlessly across:

  • OpenAI Agents - Native integration with OpenAI’s agent framework
  • LangChain - Full ecosystem support including LangGraph and LangSmith
  • CrewAI - Multi-agent workflow monitoring and governance
  • LlamaIndex - RAG application observability and policy enforcement
  • Custom Frameworks - Extensible adapter system for any LLM implementation

Enterprise-Grade Observability

Built on OpenTelemetry standards, Rizk SDK delivers production-ready observability:

from rizk.sdk import Rizk
from rizk.sdk.decorators import workflow, guardrails
# Initialize once, monitor everything
rizk = Rizk.init(app_name="production-app", enabled=True)
@workflow(name="user_interaction", organization_id="acme", project_id="ai-assistant")
@guardrails()
def handle_user_request(request: str) -> str:
# Your LLM logic - automatically monitored and governed
return llm_response

Result: Complete visibility into your LLM operations with distributed tracing, performance metrics, and policy enforcement.

Multi-Layer Governance

Rizk’s policy enforcement system provides comprehensive governance through three evaluation layers:

  1. Fast Rules Engine - Regex-based pattern matching for immediate policy decisions
  2. Policy Augmentation - Context-aware prompt enhancement with compliance guidelines
  3. LLM Fallback - Advanced LLM-based evaluation for complex policy scenarios

Quick Start Paths

âš¡ 5-Minute Quick Start

Get Rizk SDK running in your application immediately. Perfect for evaluation and proof-of-concept implementations.

Ideal for: Initial evaluation, demos, rapid prototyping

📦 Complete Installation Guide

Comprehensive setup covering production environments, framework-specific configurations, and enterprise deployment patterns.

Ideal for: Production deployments, enterprise environments, complex integrations

👨‍💻 End-to-End Tutorial

Build a complete LLM application with monitoring and governance from scratch. Includes best practices, error handling, and production considerations.

Ideal for: Learning core concepts, understanding best practices, building production applications

⚙️ Configuration Reference

Essential configuration patterns for different deployment scenarios, from development to enterprise production.

Ideal for: DevOps teams, production deployments, compliance requirements

Architecture Overview

Rizk SDK implements a clean, layered architecture that integrates seamlessly with your existing infrastructure:

┌─────────────────────────────────────────────────────────────────┐
│ Your LLM Application │
│ (Any Framework, Any LLM Provider) │
├─────────────────────────────────────────────────────────────────┤
│ Rizk SDK Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ Decorators │ │ Guardrails │ │ Observability │ │
│ │ Universal │ │ Engine │ │ & Tracing │ │
│ │ Monitoring │ │ Multi-Layer │ │ OpenTelemetry │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ Auto-Detected Framework Adapters │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌───────────┐ │
│ │ OpenAI │ │ LangChain │ │ CrewAI │ │ LlamaIndex│ │
│ │ Agents │ │ Ecosystem │ │ Multi-Agent │ │ RAG │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └───────────┘ │
├─────────────────────────────────────────────────────────────────┤
│ OpenTelemetry Foundation │
│ (Industry Standard Observability) │
└─────────────────────────────────────────────────────────────────┘

Key Capabilities

Automatic Framework Detection

Rizk SDK automatically detects and configures appropriate adapters for your LLM framework:

# Works with any framework - no manual configuration required
@workflow(name="langchain_workflow")
def process_with_langchain():
# LangChain implementation
return agent_executor.invoke({"input": query})
@workflow(name="crewai_workflow")
def process_with_crewai():
# CrewAI implementation
return crew.kickoff({"topic": topic})

Hierarchical Context Management

Organize your LLM operations with enterprise-grade context hierarchy:

Organization → Project → Agent → Conversation → User

This structure enables:

  • Cost Attribution - Track spending by business unit
  • Performance Analysis - Identify bottlenecks across teams
  • Compliance Reporting - Generate audit trails by organization
  • Access Control - Implement role-based policy enforcement

Production-Ready Governance

Implement comprehensive AI governance with minimal code changes:

@workflow(name="financial_advisor")
@guardrails() # Automatic compliance enforcement
def provide_financial_guidance(query: str) -> str:
# Automatic policy enforcement for financial regulations
return financial_llm_response(query)

Enterprise Use Cases

Financial Services

  • Compliance Monitoring - Ensure responses meet regulatory requirements
  • Risk Management - Detect and prevent inappropriate financial advice
  • Audit Trails - Complete traceability for regulatory reporting

Healthcare

  • HIPAA Compliance - Protect patient data in LLM interactions
  • Medical Accuracy - Prevent medical advice from general-purpose models
  • Access Control - Role-based policy enforcement
  • Confidentiality Protection - Prevent disclosure of sensitive information
  • Professional Standards - Ensure responses meet legal professional standards
  • Client Attribution - Track usage and costs by client matter

Integration Patterns

Microservices Architecture

# Service A - Customer Support
@workflow(name="customer_support", organization_id="support", project_id="chatbot")
@guardrails()
def handle_support_request(request: str) -> str:
return support_response(request)
# Service B - Sales Assistant
@workflow(name="sales_assistant", organization_id="sales", project_id="lead_qualification")
@guardrails()
def qualify_lead(conversation: str) -> Dict:
return lead_analysis(conversation)

Event-Driven Systems

@workflow(name="process_user_event")
@guardrails()
async def handle_user_event(event: UserEvent) -> None:
# Async processing with full observability
response = await llm_processor.process(event.content)
await event_bus.publish(ProcessedEvent(response))

Batch Processing

@workflow(name="batch_document_processing")
@guardrails()
def process_document_batch(documents: List[Document]) -> List[ProcessedDocument]:
# Batch processing with individual item tracing
return [process_document(doc) for doc in documents]

Performance & Scale

Benchmarked Performance

  • Latency Overhead: < 2ms per operation
  • Memory Footprint: < 10MB baseline
  • Throughput: Tested at 10,000+ requests/second
  • Concurrency: Full async/await support

Scalability Features

  • Distributed Caching - Redis integration for multi-instance deployments
  • Load Balancing - Stateless design for horizontal scaling
  • Resource Management - Configurable resource limits and throttling

Next Steps

Choose your integration path based on your needs:

Use CaseRecommended PathTime Investment
EvaluationQuick Start5 minutes
DevelopmentComplete Tutorial30 minutes
ProductionInstallation Guide + Configuration2 hours
EnterpriseAll guides + Advanced Configuration1 day

Advanced Topics

After completing the getting started guides, explore:

  1. Core Concepts - Deep dive into SDK architecture
  2. Framework Integration - Framework-specific patterns
  3. Policy Engineering - Advanced governance strategies
  4. Production Deployment - Enterprise deployment patterns

Support & Community

Enterprise Support

  • Technical Support - Direct access to engineering team
  • Implementation Services - Guided integration and optimization
  • Custom Adapters - Framework-specific integration development
  • Compliance Consulting - Regulatory requirement implementation

Community Resources

  • Documentation - Comprehensive guides and API reference
  • GitHub - Open source contributions and issue tracking
  • Discord - Real-time community support and discussions
  • Blog - Best practices and case studies

Ready to implement world-class LLM observability?

Get Started in 5 Minutes →

Rizk SDK - Trusted by leading AI teams worldwide